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Abstract. This paper builds on previous work due to Glasner-Weiss
[7], concerning the connection between topological transitivity, recurrence and
sensitive dependence on initial conditions.

The basic feature of the phenomenon of deterministic chaos is the sensitive de-
pendence on initial conditions, a property in oposition to stability. We shall discuss
it in the context of topological dynamical systems, acting on metric spaces. In what
follows M will denote a metric space and S will be one of the semigroups N;Z;R+;
or R:

De�nition 1. (J. Guckenheimer [8]) A topological dynamical system � : S �M !
M shows sensitive dependence on initial conditions (equivalently, � is sensitive) if
there exists a � > 0 such that for every x 2M and every neighbourhood V of x one
can �nd a point y 2 V and a number t 2 S; t > 0; for which

d(�tx;�ty) > �:

The terminology above extends to the case of continuous mappings T :M !M;
by refering to the status of the discrete dynamical systems (T n)n2N they generate.
As well known, the behaviour of many dynamical systems can be settled by observing
appropriate mappings.
The simplest example of a mapping which shows sensitive dependence on initial

conditions is that of doubling angles on the unit circle,

T : S1 ! S1; T (z) = z2:

In many cases (included this one) the sensitive dependence on initial conditions
is a result of topological transitivity and abundance of nice orbits. To detail this
assertion, we need a preparation, mostly due to E. Glasner and B. Weiss [7].
Given a topological dynamical system � : S �M ! M; a point a of M is said

to be transitive if its !�limit set is M. The systems � which admit transitive points
are themselves called topologically transitive. Topological transitivity indicates the
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existence of complicated (dense) orbits. It could lead eventually to sensitivity, as it
is the case where M is an interval. See [3].
If the phase space M has an isolated point, then all topological dynamical system

acting on it are nonsensitive; just negate the de�nition of sensitivity. So, only the
perfect metric spaces enter the story and in that case the restriction of the given
system to the closure of each orbit is topologically transitive.
The following result says that topological transitivity is a stroboscopic property:

Lemma 1. (H. Onishi; cf. [1], page 104). Let (tn)n be a real sequence tending to
1: Then there exists a residual subset A of R+ with the following property: for each
t 2 A one can �nd a subsequence (tk(n))n of (tn)n and a sequence (mk(n))n of natural
numbers such that tk(n) � t �mk(n) ! 0 as n!1:

The basic fact relating topological transitivity and chaotic behaviour is stated as
follows:

Lemma 2. Let � : S �M !M be a topologically transitive nonsensitive dynamical
system. Then for every " > 0 there exist a transitive point a 2M and a neighbourhood
U of it such that

sup
x2U

sup
t2S+

d(�tx;�ta) � ":

Proof. Because � is nonsensitive, there must exist a point z and an open neighbour-
hood V of it such that

sup
y2V

sup
t2S+

d(�tz;�ty) < "=2:

Letting b a transitive point of �; it follows that a = �sb 2 V for some s 2 S+ and
thus U = B�(a) � V for some � > 0: Clearly, a is also a transitive point for � and
for every x 2 U and every t 2 S+ we have

d(�ta;�tx) � d(�ta;�tz) + d(�tz;�tx) < ": �

Corollary 3. Let � : S �M ! M be a topologically transitive nonsensitive dyna-
mical system. Then there exist a t > 0 in S and a strictly increasing sequence (k(n))n
of natural numbers such that

�k(n) � t ! idM

uniformly as n ! 1: Moreover, in the continuous time case, the set of all such t is
a residual.
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Proof. Notice �rst the existence of a t > 0 in S such that �t is topologically tran-
sitive; see Lemma 1, for the continuous time case. Because � is nonsensitive, �t is
nonsensitive too. According to Lemma 2, for each n 2 N? there exists a transitive
point an and a neighbourhood Un of an such that

sup
k2N

sup
x2Un

d(�ktx;�ktan) < 1=n

which yields, for each n, a k(n) 2 S+; k(n) � n; such that �k(n)�tan 2 Un: Then

sup
m2N

d(�k(n)�t(�m�tan);�m�tan) < 1=n

which leads to
d(�k(n)�tx; x) < 1=n

because of the transitivity of an: Consequently, �k(n)�t ! idM uniformly, as n!1: �

The property outlined in Corollary 1 above re�ects a certain kind of rigidity of the
nonchaotic systems. The trajectories of the di¤erent points visit at the same moment
of time all "� neighbourhoods, so the di¤erent patterns in the phase space tend to
be recovered during the process of iteration.
Quite natural, the transitivity and the frequency at which the neighbourhoods are

visited play a role in relating chaotic situations. We shall need the following de�nition
introducing a class of fast recurrent points:

De�nition 2. A point a of M is said to be algebraically recurrent (for a topological
dynamical system � : S �M !M) if for every neighbourhood U of it there exists a
sequence (k(n))n of elements of S+ such that �k(n)a 2 U for every n 2 N; k(n)!1
and one of the di¤erence sets

A0 = fk(n) jn 2 Ng
An = fs� t j for all t < s in An�1g; n � 1

has bounded gaps (i.e., for a suitable L > 0; every interval [�; �] � R+ with ��� > L
contains an element in that set):

Roughly speaking, algebraic recurrence means that each neighbourhood (of the
point under attention) is visited at polinomial frequency. There are two particular
cases, already noticed in the literature: In the case of uniformly recurrent (equiva-
lently, almost periodic) points, A0 has bounded gaps. In the case of regular points
(i.e., the generic points a for which there exist invariant probability measures � such
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that �(U) > 0 for every neighbourhood U of a), A1 has bounded gaps; see [6], page
75, for details.
If a point a is algebraically recurrent, then all points of its orbit are of the same

type. Consequently, we can speak of algebraically recurrent orbits.

Theorem 4. Suppose that � : S � M ! M is a topological dynamical system
satisfying the following two conditions:
(T ) � is topologically transitive;
(AR) The union of all algebraically recurrent orbits is dense.
Then either � shows sensitive dependence on initial conditions or � is nonsensitive

and minimal.

Proof. Suppose that � is nonsensitive. We shall show that every point z ofM is topo-
logically transitive. For, we have to remark the following property of equicontinuity
played by � :

For every " > 0 there exists a � > 0 such that

d(y; z) < � implies sup
t2S+

d(�ty;�tz) < ": (1)

In fact, given " > 0 we can choose (via Lemma 2) a transitive point a and a
neighbourhood U of a such that

sup
x2U

sup
t2S+

d(�tx;�ta) < ":

By (AR), there exists also an algebraically recurrent point p 2 U and thus a
strictly increasing sequence (k(n))n of elements of S+; with the properties stated in
De�nition 2 above. By Lemma 1, we can assume also that all the mappings �k(n) are
topologically transitive (and thus they have dense images) ; for, replace the sequence
(k(n))n by a translate of it, if necessary. Then for every t 2 S+ and every n 2 N we
have

d(�k(n)�ta;�ta) � d(�k(n)+ta;�k(n)+tp) + d(�k(n)+tp;�ta) < 2"
and thus

sup
n2N

sup
x2M

d(�k(n)x; x) � 2"

because the positive orbit of a is dense.
Let 0 � m � n in N: Then

d(�k(n)�k(m)�k(m)x;�k(m)x) = d(�k(n)x;�k(m)x) � 4"



Topological transitivity and recurrence as a source of chaos 5

for every x 2M: Because the mappings �k(n) have dense images, we get

sup
x2M

d(�sx; x) � 4"

for every s in the di¤erence set A1 = fk(n)� k(m) j 0 � m � n inNg: Letting

A0 = fk(n) jn 2 Ng
Aj = fs� t j 0 � t � s inAj�1g; j � 1

it is clear that
sup
x2M

d(�sx; x) � 2j+1" (2)

for every s 2 Aj: Since p is uniformly recurrent, one of the above sets, say AN has
bounded gaps. Letting AN as an increasing sequence fs(n) jn 2 Ng; there exists a
constant L > 0 such that s(n+ 1)� s(n) � L for every n 2 N:
A simple compactness argument shows that the family (�t)t2[0;L] is equicontinuous

at z, so to derive (1) from (2) (with n = N) it su�ces to notice the equality

d(�ty;�tz) = d(�t�s(n)�s(n)y;�t�s(n)�s(n)z)

which works for all t 2 [s(n); s(n) + L]:
Now, to conclude the proof of the transitivity of z, let x 2 M and " > 0: Then

choose a � > 0 as in (1) and remark that by transitivity of a there exists a pair t0; t00

in S; with t00 > t0 + 1=" > t0 > 0; such that

d(�t0a; z) < � and d(�t00a; x) < ":

Then t00 � t0 > 1=" and

d(�t00�t0z; x) � d(�t00�t0z;�t00�t0�t0a) + d(�t00a; x) < 2";

which assures that !(z) =M: �
If a system is minimal, then all points of its state space are uniformly recurrent.

The case of irrational rotations shows that minimality alone is not strong enough
to imply sensitivity. On the other hand, there exist sensitive systems which do not
satisfy either (T ) or (AR).

Example 1. (Sensitivity without recurrence and topological transitivity). Consider
the mapping

T (x) =

�
3x=2 if 0 � x � 2=3

�3x=2 + 2 if 2=3 � x � 1:
Clearly, T is expansive and thus chaotic. Because the !� limit set of (0; 1) is included
in [1=2; 1]; no points in (0; 1=2) is recurrent. Because the interval (1=2; 1) is positively
invariant, T cannot be topologically transitive.
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R. Devaney [4] made the �rst attempt to de�ne the term of chaotic dynamical
system. Except for a redundancy noticed by J. Banks, J. Brooks, G. Cairns, G. Davis
and P. Stacey [2], his de�nition is as follows:

De�nition 3. A topological dynamical system � is said to be Devaney chaotic if it
is topologically transitive, nonminimal and the union of all periodic orbits is dense.

In the case of Devaney chaotic behaviour, the nonminimality is equivalent to the
fact that the phase space contains an in�nity of points. Devaney�s original de�nition
asked also for sensitivity, but it was noticed in [2] that the sensitivity follows from
the other hypotheses. Of course, Theorem 1 covers the matter, but it is larger than
the situation of De�nition 3.
Theorem 1 has counterparts for attractors (i.e., bounded, closed, invariant and

attractive sets). See Haraux [9], for details. We notice here only a particular case,
strong enough to explain why chaotic behaviour is merely a common phenomenon
than an exotic one.

Theorem 5. Let � be a topological dynamical system acting on a metric space.
Suppose that � has a compact attractor A such that:
(P ) The set of periodic orbits of � is dense in A.
(T ) �jA is topologically transitive.
Then either A is a periodic attractor, or A is a strange attractor (i.e., the dynamics

on it is sensitive).

The conditions (P ) and (T ) in Theorem 2 above are ful�lled for example by the
so called Axiom A attractors. See [11], for details. Due to their hyperbolic structure,
all these attractors show sensitive dependence on initial conditions. Particularly, this
is the case of the horseshoe, the solenoid, Anosov�s tori etc.
The conditions (T ) and (AR) both passes to quotients, so in principle we can

exhibit new examples of sensitive dynamical systems (or of strange attractors) by
passing to appropriate quotients.
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